Грозовая энергетика как перспективный источник энергии. Международный студенческий научный вестник Грозовая энергия

25.04.2018

Это направление пока еще можно назвать теоретическим. Его суть состоит в том, чтобы улавливать энергию молний с последующим перенаправлением ее в электросети. Такой источник энергии является возобновляемым, специалисты относят его к альтернативным, иначе говоря, экологически безопасным.

Как мы помним из школьного курса, образование молний представляет собой довольно сложный процесс. Из наэлектризованных облаков по направлению к земле устремляется главный разряд, сформированный электронными лавинами, объединенными в стримеры (разряды). За этим разрядом-лидером образуется горячий ионизированный канал. В свою очередь, по этому каналу в направлении от Земли движется главный разряд молнии, который вырывается с поверхности под действием мощного электрического поля. Процесс протекает молниеносно, повторяясь по несколько раз за долю секунды. Главная задача – уловить этот разряд и направить его в электросеть.

О преимуществах

Небесным электричеством люди заинтересовались очень давно. Стоит вспомнить Бенджамина Франклина, который в своих опытах запускал во время грозы воздушных змеев и в результате понял, что они собирают электрические заряды.

Если говорить об энергии молний, то в одном разряде собрано пять миллиардов джоулей чистейшей энергии, эквивалентной 145 литрам бензина. Ученые рассчитали, что один разряд молнии может обеспечить энергией население Соединенных Штатов на 20 минут. А если учесть, что каждый год по всей Земле ударяет полтора миллиарда разрядов (от 40 до 50 разрядов за секунду), то перспективы открываются поистине потрясающие.

Об экспериментах

Представители компании Alternative Energy Holdings в 2006 году сделали заявление, что ими успешно создан прототип конструкции, при помощи которой можно наглядно показать, как происходит захват молнии и ее преобразование в энергию для бытовых нужд. Как сказали в Alternative Energy Holdings, действующий промышленный аналог способен окупить себя за 4-7 лет, если розничная стоимость энергии будет составлять 0,005 $ за киловатт/час. Но проведенная серия опытов, видимо, не продемонстрировала впечатляющих результатов, и руководители проекта закрыли его. После чего энергия молний и энергия атомной бомбы были поставлены в один ряд (по словам Мартина А. Умани).

Через несколько лет (в 2013 году) сотрудники саунгемптонского университета смоделировали в лаборатории искусственный заряд, совпадающий с параметрами естественных молний. Используя сравнительно простое оборудование, ученые сумели уловить заряд и с его помощью целиком зарядить аккумулятор смартфона за считанные минуты.

О перспективах

Фермы по «отлову» молний пока еще просто мечта. На них можно было бы бесконечно получать дешевую энергию, не нанося вреда экологии. Главная проблема, препятствующая развитию этого направления, заключается в невозможности предсказания места и времени очередной грозы. То есть даже в местах с установленным максимальным числом ударов молний необходимо монтировать большое количество «ловушек».

Есть еще другие проблемы, которые заключаются в следующем:

  • молнии представляют собой кратковременные энергетические всплески длительностью в доли секунды, которые необходимо осваивать очень быстро. Решить эту задачу можно при наличии мощных конденсаторов. Однако такие устройства еще не созданы, а если и будут разработаны в будущем, то окажутся очень дорогими. Не исключено применение и различных колебательных систем с наличием контуров 2 и 3 рода, которые позволяют проводить согласование нагрузки с внутренним сопротивлением генераторов;
  • молнии могут образовываться из энергии, скопившейся в верхней и нижней частях облаков. В первом случае они будут положительными, во втором – отрицательными. Это тоже необходимо учитывать, оборудуя молниевую ферму. Кроме того, для «ловли» заряда со знаком плюс потребуется дополнительная энергия, наглядным доказательством чего служит люстра Чижевского;
  • по своей мощности заряды тоже сильно различаются. У большинства молний данный параметр составляет от 5 до 20 кА, однако у некоторых всполохов может достигать 200 кА. Для бытового использования каждый из разрядов необходимо стандартизировть (50-60 Гц, 220 В);
  • заряженные ионы в кубометре атмосферы имеют низкую плотность, а сопротивление воздуха, наоборот, высокое. Это говорит о том, что для улавливания молний необходимы ионизированные электроды, приподнятые над землей на максимальную величину, однако и они улавливают энергию лишь в виде микротоков. Но если электрод будет расположен слишком высоко (т.е. близко к облакам), то возможно самопроизвольное образование молнии, проще говоря, возникнет мощный и кратковременный всплеск напряжения, создающий риск поломки оборудования.

И все же такие проблемы не останавливают людей, мечтающих создать молниевые фермы. Ведь мечта об укрощении природы и получении доступа к возобновляемым энергетическим ресурсам существует сотни лет и становится все более реальной.

Доктор биологических наук, кандидат физико-математических наук К. БОГДАНОВ.

В каждый момент времени в разных точках Земли сверкают молнии более 2000 гроз. В каждую секунду около 50 молний ударяются в поверхность земли, и в среднем каждый ее квадратный километр молния поражает шесть раз за год. Еще Б. Франклин показал, что молнии, бьющие по земле из грозовых облаков, - это электрические разряды, переносящие на нее отрицательный заряд величиной несколько десятков кулон, а амплитуда тока при ударе молнии составляет от 20 до 100 кА. Скоростная фотосъемка показала, что разряд молнии длится несколько десятых долей секунды и состоит из нескольких еще более коротких разрядов. Молнии издавна интересуют ученых, но и в наше время об их природе мы знаем лишь немного больше, чем 250 лет тому назад, хотя смогли их обнаружить даже на других планетах.

Наука и жизнь // Иллюстрации

Способность электризации трением различных материалов. Материал из трущейся пары, находящийся выше в таблице, заряжается положительно, а ниже - отрицательно.

Отрицательно заряженный низ облака поляризует поверхность Земли под собой так, что она заряжается положительно, и, кода появляются условия для электрического пробоя, возникает разряд молнии.

Распределение частоты гроз по поверхности суши и океанов. Самые темные места на карте соответствуют частотам не более 0,1 грозы в год на квадратный километр, а самые светлые - более 50.

Зонт с громоотводом. Модель продавалась в XIX веке и пользовалась спросом.

Выстрел жидкостью или лазером по грозовой туче, нависшей над стадионом, уводит разряд молнии в сторону.

Несколько разрядов молний, вызванных пуском ракеты в грозовую тучу. Левая вертикальная прямая - след ракеты.

Крупный «ветвистый» фульгурит весом 7,3 кг, найденный автором на окраине Москвы.

Полые цилиндрические фрагменты фульгурита, образованные из оплавленного песка.

Белый фульгурит из Техаса.

Молния - вечный источник подзарядки электрического поля Земли . В начале XX века с помощью атмосферных зондов измерили электрическое поле Земли. Его напряженность у поверхности оказалась равной примерно 100 В/м, что соответствует суммарному заряду планеты около 400 000 Кл. Переносчиком зарядов в атмосфере Земли служат ионы, концентрация которых увеличивается с высотой и достигает максимума на высоте 50 км, где под действием космического излучения образовался электропроводящий слой - ионосфера. Поэтому электрическое поле Земли - это поле сферического конденсатора с приложенным напряжением около 400 кВ. Под действием этого напряжения из верхних слоев в нижние все время течет ток силой 2-4 кА, плотность которого составляет 1-2 . 10 -12 А/м 2 , и выделяется энергия до 1,5 ГВт. И это электрическое поле исчезло бы, если бы не было молний! Поэтому в хорошую погоду электрический конденсатор - Земля - разряжается, а при грозе заряжается.

Человек не чувствует электрического поля Земли, так как его тело - хороший проводник. Поэтому заряд Земли находится и на поверхности тела человека, локально искажая электрическое поле. Под грозовым облаком плотность наведенных на земле положительных зарядов может значительно возрастать, а напряженность электрического поля - превышать 100 кВ/м, в 1000 раз больше ее значения в хорошую погоду. В результате во столько же раз увеличивается положительный заряд каждого волоска на голове человека, стоящего под грозовой тучей, и они, отталкиваясь друг от друга, встают дыбом.

Электризация - удаление "заряженной" пыли. Чтобы понять, как облако разделяет электрические заряды, вспомним, что такое электризация. Легче всего зарядить тело, потерев его о другое. Электризация трением - самый старый способ получения электрических зарядов. Само слово "электрон" в переводе с греческого на русский означает янтарь, так как янтарь всегда заряжался отрицательно при трении о шерсть или шелк. Величина заряда и его знак зависят от материалов трущихся тел.

Считается, что тело, до того как его стали тереть о другое, электронейтрально. Действительно, если оставить заряженное тело в воздухе, то к нему начнут прилипать противоположно заряженные частицы пыли и ионы. Таким образом, на поверхности любого тела находится слой "заряженной" пыли, нейтрализующий заряд тела. Поэтому электризация трением - это процесс частичного снятия "заряженной" пыли с обоих тел. При этом результат будет зависеть от того, на сколько лучше или хуже снимается "заряженная" пыль с трущихся тел.

Облако - фабрика по производству электрических зарядов. Трудно представить, что в облаке находится пара материалов из перечисленных в таблице. Однако на телах может оказаться различная "заряженная" пыль, даже если они сделаны из одного того же материала, - достаточно, чтобы микроструктура поверхности отличалась. Например, при трении гладкого тела о шероховатое оба будут электризовываться.

Грозовое облако - это огромное количество пара, часть которого конденсировалось в виде мельчайших капелек или льдинок. Верх грозового облака может находиться на высоте 6-7 км, а низ нависать над землей на высоте 0,5-1 км. Выше 3-4 км облака состоят из льдинок разного размера, так как температура там всегда ниже нуля. Эти льдинки находятся в постоянном движении, вызванном восходящими потоками теплого воздуха от нагретой поверхности земли. Мелкие льдинки легче, чем крупные, увлекаются восходящими потоками воздуха. Поэтому "шустрые" мелкие льдинки, двигаясь в верхнюю часть облака, все время сталкиваются с крупными. При каждом таком столкновении происходит электризация, при которой крупные льдинки заряжаются отрицательно, а мелкие - положительно. Со временем положительно заряженные мелкие льдинки оказываются в верхней части облака, а отрицательно заряженные крупные - внизу. Другими словами, верхушка грозы заряжена положительно, а низ - отрицательно. Все готово для разряда молнии, при котором происходит пробой воздуха и отрицательный заряд с нижней части грозовой тучи перетекает на Землю.

Молния - привет из космоса и источник рентгеновского излучения. Однако само облако не в состоянии так наэлектризовать себя, чтобы вызвать разряд между своей нижней частью и землей. Напряженность электрического поля в грозовом облаке никогда не превышает 400 кВ/м, а электрический пробой в воздухе происходит при напряженности больше 2500 кВ/м. Поэтому для возникновения молнии необходимо что-то еще кроме электрического поля. В 1992 году российский ученый А. Гуревич из Физического института им. П. Н. Лебедева РАН (ФИАН) предположил, что своеобразным зажиганием для молнии могут быть космические лучи - частицы высоких энергий, обрушивающиеся на Землю из космоса с околосветовыми скоростями. Тысячи таких частиц каждую секунду бомбардируют каждый квадратный метр земной атмосферы.

Согласно теории Гуревича, частица космического излучения, сталкиваясь с молекулой воздуха, ионизирует ее, в результате чего образуется огромное число электронов, обладающих высокой энергией. Попав в электрическое поле между облаком и землей, электроны ускоряются до околосветовых скоростей, ионизируя путь своего движения и, таким образом, вызывая лавину электронов, движущихся вместе с ними к земле. Ионизированный канал, созданный этой лавиной электронов, используется молнией для разряда (см. "Наука и жизнь" № 7, 1993 г.).

Каждый, кто видел молнию, заметил, что это не ярко светящаяся прямая, соединяющая облако и землю, а ломаная линия. Поэтому процесс образования проводящего канала для разряда молнии называют ее "ступенчатым лидером". Каждая из таких "ступенек" - это место, где разогнавшиеся до околосветовых скоростей электроны остановились из-за столкновений с молекулами воздуха и изменили направление движения. Доказательство для такой интерпретации ступенчатого характера молнии - вспышки рентгеновского излучения, совпадающие с моментами, когда молния, как бы спотыкаясь, изменяет свою траекторию. Недавние исследования показали, что молния служит довольно мощным источником рентгеновского излучения, интенсивность которого может составлять до 250 000 электронвольт, что примерно в два раза превышает ту, которую используют при рентгене грудной клетки.

Как вызвать разряд молнии? Изучать то, что произойдет непонятно где и когда, очень сложно. А именно так в течение долгих лет работали ученые, исследующие природу молний. Считается, что грозой на небе руководит Илья-пророк и нам не дано знать его планы. Однако ученые очень давно пытались заменить Илью-пророка, создавая проводящий канал между грозовой тучей и землей. Б. Франклин для этого во время грозы запускал воздушный змей, оканчивающийся проволокой и связкой металлических ключей. Этим он вызывал слабые разряды, стекающие вниз по проволоке, и первым доказал, что молния - это отрицательный электрический разряд, стекающий с облаков на землю. Опыты Франклина были чрезвычайно опасными, и один из тех, кто их пытался повторить, - российский академик Г. В. Рихман - в 1753 году погиб от удара молнии.

В 1990-х годах исследователи научились вызывать молнии, не подвергая опасности свою жизнь. Один из способов вызвать молнию - запустить с земли небольшую ракету прямо в грозовую тучу. Вдоль всей траектории ракета ионизирует воздух и создает таким образом проводящий канал между тучей и землей. И если отрицательный заряд низа тучи достаточно велик, то вдоль созданного канала происходит разряд молнии, все параметры которого регистрируют приборы, расположенные рядом со стартовой площадкой ракеты. Чтобы создать еще лучшие условия для разряда молнии, к ракете присоединяют металлический провод, соединяющий ее с землей.

Молния: подарившая жизнь и двигатель эволюции . В 1953 году биохимики С. Миллер (Stanley Miller) и Г. Юри (Harold Urey) показали, что одни из "кирпичиков" жизни - аминокислоты могут быть получены путем пропускания электрического разряда через воду, в которой растворены газы "первобытной" атмосферы Земли (метан, аммиак и водород). Спустя 50 лет другие исследователи повторили эти опыты и получили те же результаты. Таким образом, научная теория зарождения жизни на Земле отводит удару молнии основополагающую роль.

При пропускании коротких импульсов тока через бактерии в их оболочке (мембране) появляются поры, через которые внутрь могут проходить фрагменты ДНК других бактерий, запуская один из механизмов эволюции.

Почему зимой грозы очень редки? Ф. И. Тютчев, написав "Люблю грозу в начале мая, когда весенний первый гром…", знал, что зимой гроз почти не бывает. Чтобы образовалось грозовое облако, необходимы восходящие потоки влажного воздуха. Концентрация насыщенных паров растет с повышением температуры и максимальна летом. Разница температур, от которой зависят восходящие потоки воздуха, тем больше, чем выше его температура у поверхности земли, так как на высоте нескольких километров его температура не зависит от времени года. Значит, интенсивность восходящих потоков максимальна тоже летом. Поэтому и грозы у нас чаще всего летом, а на севере, где и летом холодно, грозы довольно редки.

Почему грозы чаще над сушей, чем над морем? Чтобы облако разрядилось, в воздухе под ним должно быть достаточное число ионов. Воздух, состоящий только из молекул азота и кислорода, не содержит ионов, и его очень тяжело ионизировать даже в электрическом поле. А вот если в воздухе много инородных частиц, например пыли, то и ионов тоже много. Ионы образуются при движении частиц в воздухе аналогично тому, как электризуются при трении друг о друга различные материалы. Очевидно, что пыли в воздухе гораздо больше над сушей, чем над океанами. Поэтому-то грозы и гремят над сушей чаще. Замечено также, что прежде всего молнии бьют по тем местам, где в воздухе особенно велика концентрация аэрозолей - дымов и выбросов предприятий нефтеперерабатывающей промышленности.

Как Франклин отклонил молнию. К счастью, большинство разрядов молнии происходят между облаками и поэтому угрозы не представляют. Однако считается, что каждый год молнии убивают более тысячи людей по всему миру. По крайней мере, в США, где ведется такая статистика, каждый год от удара молнии страдают около 1000 человек и более ста из них погибают. Ученые давно пытались защитить людей от этой "кары божьей". Например, изобретатель первого электрического конденсатора (лейденской банки) Питер ван Мушенбрук (1692-1761) в статье об электричестве, написанной для знаменитой французской Энциклопедии, защищал традиционные способы предотвращения молнии - колокольный звон и стрельбу из пушек, которые, как он считал, оказываются довольно эффективными.

Бенджамин Франклин, пытаясь защитить Капитолий столицы штата Мериленд, в 1775 году прикрепил к зданию толстый железный стержень, который возвышался над куполом на несколько метров и был соединен с землей. Ученый отказался патентовать свое изобретение, желая, чтобы оно как можно скорее начало служить людям.

Весть о громоотводе Франклина быстро разнеслась по Европе, и его выбрали во все академии, включая и Российскую. Однако в некоторых странах набожное население встретило это изобретение с возмущением. Сама мысль, что человек так легко и просто может укротить главное оружие "божьего гнева", казалась кощунственной. Поэтому в разных местах люди из благочестивых соображений ломали громоотводы. Любопытный случай произошел в 1780 году в небольшом городке Сент-Омер на севере Франции, где горожане потребовали снести железную мачту громоотвода, и дело дошло до судебного разбирательства. Молодой адвокат, защищавший громоотвод от нападок мракобесов, построил защиту на том, что и разум человека, и его способность покорять силы природы имеют божественное происхождение. Все, что помогает спасти жизнь, во благо - доказывал молодой адвокат. Он выиграл процесс и снискал большую известность. Адвоката звали Максимилиан Робеспьер. Ну а сейчас портрет изобретателя громоотвода - самая желанная репродукция в мире, ведь она украшает известную всем стодолларовую купюру.

Как можно защититься от молнии с помощью водяной струи и лазера . Недавно был предложен принципиально новый способ борьбы с молниями. Громоотвод создадут из... струи жидкости, которой будут стрелять с земли непосредственно в грозовые облака. Громоотводная жидкость представляет собой солевой раствор, в который добавлены жидкие полимеры: соль предназначена для увеличения электропроводности, а полимер препятствует "распаду" струи на отдельные капельки. Диаметр струи составит около сантиметра, а максимальная высота - 300 метров. Когда жидкий громоотвод доработают, им оснастят спортивные и детские площадки, где фонтан включится автоматически, когда напряженность электрического поля станет достаточно высокой, а вероятность удара молнии - максимальной. По струе жидкости с грозового облака будет стекать заряд, делая молнию безопасной для окружающих. Аналогичную защиту от разряда молнии можно сделать и с помощью лазера, луч которого, ионизируя воздух, создаст канал для электрического разряда вдали от скопления людей.

Может ли молния сбить нас с пути? Да, если вы пользуетесь компасом. В известном романе Г. Мелвила "Моби Дик" описан именно такой случай, когда разряд молнии, создавший сильное магнитное поле, перемагнитил стрелку компаса. Однако капитан судна взял швейную иглу, ударил по ней, чтобы намагнитить, и поставил ее вместо испорченной стрелки компаса.

Может ли вас поразить молния внутри дома или самолета? К сожалению, да! Ток грозового разряда может войти в дом по телефонному проводу от рядом стоящего столба. Поэтому при грозе старайтесь не пользоваться обычным телефоном. Считается, что говорить по радиотелефону или по мобильному безопасней. Не следует во время грозы касаться труб центрального отопления и водопровода, которые соединяют дом с землей. Из этих же соображений специалисты советуют при грозе выключать все электрические приборы, в том числе компьютеры и телевизоры.

Что касается самолетов, то, вообще говоря, они стараются облетать районы с грозовой активностью. И все-таки в среднем раз в год в один из самолетов попадает молния. Ее ток поразить пассажиров не может, он стекает по внешней поверхности самолета, но способен вывести из строя радиосвязь, навигационное оборудование и электронику.

Фульгурит - окаменевшая молния. При разряде молнии выделяется 10 9 -10 10 джоулей энергии. Большая ее часть тратится на создание ударной волны (гром), нагрев воздуха, световую вспышку и другие электромагнитные волны, и только маленькая часть выделяется в том месте, где молния входит в землю. Однако и этой "маленькой" части вполне достаточно, чтобы вызвать пожар, убить человека и разрушить здание. Молния может разогреть канал, по которому она движется, до 30 000° С, в пять раз выше температуры на поверхности Солнца. Температура внутри молнии гораздо больше температуры плавления песка (1600-2000°C), но расплавится песок или нет, зависит еще и от длительности молнии, которая может составлять от десятков микросекунд до десятых долей секунды. Амплитуда импульса тока молнии обычно равна нескольким десяткам килоампер, но иногда может превышать и 100 кА. Самые мощные молнии и вызывают рождение фульгуритов - полых цилиндров из оплавленного песка.

Слово "фульгурит" происходит от латинского fulgur, что означает молния. Самые длинные из раскопанных фульгуритов уходили под землю на глубину более пяти метров. Фульгуритами также называют оплавленности твердых горных пород, образованные ударом молнии; они иногда в большом количестве встречаются на скалистых вершинах гор. Фульгуриты, состоящие из переплавленного кремнезема, обыкновенно представляют собой конусообразные трубочки толщиной с карандаш или с палец. Их внутренняя поверхность гладкая и оплавленная, а наружная образована приставшими к оплавленной массе песчинками. Цвет фульгуритов зависит от примесей минералов в песчаной почве. Большинство из них имеют рыжевато-коричневый, серый или черный цвет, однако встречаются зеленоватые, белые или даже полупрозрачные фульгуриты.

По-видимому, первое описание фульгуритов и их связи с ударами молнии было сделано в 1706 году пастором Д. Германом (David Hermann). Впоследствии многие находили фульгуриты вблизи людей, пораженных разрядом молнии. Чарльз Дарвин во время кругосветного путешествия на корабле "Бигль", обнаружил на песчаном берегу вблизи Мальдонадо (Уругвай) несколько стеклянных трубочек, уходящих в песок вертикально вниз более чем на метр. Он описал их размеры и связал их образование с разрядами молний. Известный американский физик Роберт Вуд получил "автограф" молнии, которая чуть не убила его:

"Прошла сильная гроза, и небо над нами уже прояснилось. Я пошел через поле, которое отделяет наш дом от дома моей свояченицы. Я прошел ярдов десять по тропинке, как вдруг меня позвала моя дочь Маргарет. Я остановился секунд на десять и едва лишь двинулся дальше, как вдруг небо прорезала яркая голубая линия, с грохотом двенадцатидюймового орудия ударив в тропинку в двадцати шагах передо мной и подняв огромный столб пара. Я пошел дальше, чтобы посмотреть, какой след оставила молния. В том месте, где ударила молния, было пятно обожженного клевера дюймов в пять диаметром, с дырой посередине в полдюйма…. Я возвратился в лабораторию, расплавил восемь фунтов олова и залил в отверстие… То, что я выкопал, когда олово затвердело, было похоже на огромный, слегка изогнутый собачий арапник, тяжелый, как и полагается, в рукоятке и постепенно сходящийся к концу. Он был немного длиннее трех футов" (цитируется по В. Сибрук. Роберт Вуд. - М.: Наука, 1985, с. 285).

Появление стеклянной трубочки в песке при разряде молнии связано с тем, что между песчинками всегда находятся воздух и влага. Электрический ток молнии за доли секунд раскаляет воздух и водяные пары до огромных температур, вызывая взрывообразный рост давления воздуха между песчинками и его расширение, что слышал и видел Вуд, чудом не ставший жертвой молнии. Расширяющийся воздух образует цилиндрическую полость внутри расплавленного песка. Последующее быстрое охлаждение фиксирует фульгурит - стеклянную трубочку в песке.

Часто аккуратно выкопанный из песка фульгурит по форме напоминает корень дерева или ветвь с многочисленными отростками. Такие ветвистые фульгуриты образуются, когда разряд молнии попадает во влажный песок, который, как известно, имеет бo"льшую электропроводность, чем сухой. В этих случаях ток молнии, входя в почву, сразу начинает растекаться в стороны, образуя структуру, похожую на корень дерева, а рождающийся при этом фульгурит лишь повторяет эту форму. Фульгурит очень хрупок, и попытки очистить от прилипшего песка нередко приводят к его разрушению. Особенно это относится к ветвистым фульгуритам, образовавшимся во влажном песке.

1

Грозовая энергетика является способом, на основе которого получают энергию при помощи того, что фиксируется и перенаправляется энергия молний в электрические сети. Указанный вид энергетики использует возобновляемые источники энергии. Молния является большим искровым электрическим разрядом, который появляется в атмосфере. На основе проводившихся оценок исследователей было установлено, что в среднем в течение каждой секунды осуществляется удар 100 молний. Порядка четверти среди всех молний попадают в землю. Исследования продемонстрировали, что, как правило, значение средней длины молнии будет около 2,5 км, попадаются разряды, распространение которых может происходить на расстояния до 20 км. Если провести установку молниеулавливающей станции, где молнии считаются частным явлением, то есть возможности для получения большого количества энергии, которое будут использовать потребители.

грозовая энергетика

альтернативные источники энергии

электричество

1. Львович И.Я. Альтернативные источники энергии& / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Вестник Воронежского государственного технического университета. 2011. Т. 7. № 2. С. 50-52.

2. Львович И.Я. Альтернативные источники энергии& / И.Я. Львович, С.Н. Мохненко, А.П. Преображенский // Главный механик. 2011. № 12. С. 45-48.

3. Мохненко С.Н. Альтернативные источники энергии& / С.Н. Мохненко, А.П. Преображенский // В мире научных открытий. 2010. № 6-1. С. 153-156.

4. Олейник Д.Ю. Вопросы современной альтернативной энергетики& / Д.Ю.Олейник, К.В. Кайдакова, А.П. Преображенский // Вестник Воронежского института высоких технологий. 2012. № 9. С. 46-48.

5. Болучевская О.А. Вопросы современной экологической безопасности& / О.А. Болучевская, В.Н. Филипова& // Современные исследования социальных проблем. 2011. Т. 5. № 1. С. 147-148.

6. Преображенский А.П. Использование многокритериального подхода при анализе системы альтернативных энергетических источников& / А.П. Преображенский // Моделирование, оптимизация и& информационные технологии. 2017. № 2(17). С. 11.

7. Шишкина Ю.М. Вопросы государственного управления / Ю.М. Шишкина, О.А. Болучевская // Современные исследования социальных проблем. 2011. Т. 6. № 2. С. 241-242.

8. Нечаева А.И. О построении подсистемы оценки степени загрязненности окружающей среды / А.И. Нечаева& // Международный студенческий научный вестник. 2016. № 3-2. С. 231.

9. Щербатых С.С. О построении подсистемы оценки окружающей среды / С.С. Щербатых // Международный студенческий научный вестник. 2016. № 3-2. С. 240-241.

10. Якименко А.И. Применение современных источников энергии& / А.И. Якименко& // Международный студенческий научный вестник. 2016. № 3-2. С. 242.

Человечество непрерывным образом нуждается в потреблении энергии - это можно наблюдать еще с давних времен. Необходимо наличие энергии не только для того, чтобы осуществлялась нормальное функционирование комплексного существующего общества, но и еще с тем, чтобы было обеспечено физическое существование среди любых человеческих организмов.

Если провести анализ особенностей развития в человеческом обществе, то можно убедиться в том, что они во многом обусловлены добычей и применением энергии. Можно наблюдать довольно большое влияние со стороны энергетического потенциала на то, каким образом происходит внедрение разных технических новшеств, нам трудно представлять реализацию возможностей развития в промышленной сфере, науке, культуре без того, чтобы были использованы земные энергетические ресурсы. На базе применения энергии, человечество имеет возможности для того, чтобы создавать всё более комфортные жизненные условия, при этом идет резкое увеличение разрыв среди ним и природой.

Можно заметить, что процессы, связанные с освоением разных способов, касающихся добычи энергии, возникли ещё в далекие древние времена, уже тогда люди смогли научиться добывать огонь и в существующих условиях есть движение топлива в комплексных городских системах.

Исходя из того, что есть возможность истощения запасов ресурсов естественного топлива (нефтяные, газовые и др.) с течением временем, проводятся работы, связанные с поиском альтернативных источников энергии . По ним можно отметить возможности грозовой энергетики.

Грозовая энергетика является способом, позволяющим получать энергию на базе того, что фиксируется и перенаправляется энергия молний в электрические сети. Указанный тип энергетики базируется на возобновляемом источнике энергии. Молния является большим искровым электрическим разрядом, который появляется в атмосфере. Большей частью, его можно наблюдать при грозе. Молнию можно увидеть, как яркую световую вспышку и она сопровождается громовыми раскатами. Интересным является то, что молнии можно наблюдать еще на других планетах: Юпитер, Венера, Сатурн и др. Значение величины тока при разряде молний может достичь до нескольких десятков и даже сотен тысяч ампер, а значение величины напряжения - до миллионов вольт.

Исследования, которые касались электрической природы молний, осуществлялись в работах американского физика Б. Франклином, на базе его разработок проводились опыты, касающиеся извлечения электричества из грозовых облаков. Франклином была опубликована в 1750 году работа, содержащая описание экспериментов с применением воздушных змеев, запускаемых в период грозы.

Михаила Ломоносова считают как автора первой гипотезы, в ее рамках было объяснение явления электризации в грозовых облаках. На высотах, составляющих несколько десятков километров идет размещение проводящих слоев атмосферы, их открыли в 20 веке. На основе привлечения разных способов исследования, это касается и космических, появились возможности для того, чтобы изучать разные характеристики атмосферы.

Атмосферное электричество можно рассматривать в виде множества электрических явлений, которые осуществляются происходящих в области атмосферы. Когда осуществляют исследования по атмосферному электричеству, то идет изучение электрического поля в атмосфере, особенности ее ионизации, рассматриваются характеристики электрических токов, и другие свойства. Есть разные проявления атмосферного электричества вследствие того, что влияют локальные метеорологические факторы. В сфере атмосферного электричества наблюдаются многочисленные процессы как в тропосферной области, так и стратосферной.

Осуществлялась разработка теорий, относящихся к атмосферному электричеству исследователями Ч. Вильсоном и Я.И. Френкелем. Основываясь на теории Вильсона, есть возможности для выделения конденсатора, его обкладки представляют собой Земля и ионосфера, идет их заряд со стороны грозовых облаков. Появляется электрическое поле атмосферы вследствие того, что есть разность потенциалов, которая возникает между обкладок конденсатора. Исходя из теории Френкеля, есть возможности для объяснения электрического поля атмосферы на базе электрических явлений, возникающих в тропосферной области.

Исследования демонстрируют, что во многих случаях средняя длина молний достигает порядка 2,5 км, можно встретить разряды, которые имеют распространение на расстояния до 20 км.

Можно отметить определенную классификацию молний.

Обсудим характеристики, относящиеся к наземным молниям. Когда формируется наземная молния, то это может быть представлено как совокупность нескольких этапов. Для первого этапа, в тех областях, для которых электрическим полем достигается критическое значение, можно увидеть явление ударной ионизации, она формируется вначале за счет свободных зарядов, их всегда можно наблюдать в окружающем воздухе, ими за счет электрического поля достигаются большие величины скоростей в направлении земли и, вследствие того, что есть столкновения с молекулами, формирующими воздух, происходит их ионизация.

Если мы рассматриваем современные представления, то осуществление процессов ионизации в атмосфере, когда проходит разряд, осуществляется, поскольку влияет высокоэнергетическое космическое излучение - частицы, при этом можно наблюдать то, что уменьшается пробивное напряжение в воздухе, если сравнивать с нормальными условиями. Тогда происходит образование электронных лавин, они будут переходить в соответствующие нити в электрических разрядах, говорят о стримерах, они представляют собой хорошо проводящие каналы, за счет сливания происходит образование канала, имеющего высокую проводимость.

Есть движение такого лидера по направлению к земле на основе ступенчатой закономерности, он достигает скорости, которая будет несколько десятков тысяч км/с, потом происходит замедление его движения, можно наблюдать, что свечение уменьшается, затем идет начало следующей ступени. Значение средней скорости движения лидера к земной поверхности будет порядка 200 000 м/с. Рядом с земной поверхностью идет усиление напряженности и возникает, ответный стример, идет его соединение затем с лидером. Подобную характеристику молнии применяют, когда создают молниеотвод.

Для конечного этапа происходит главный разряд молнии, в нем идет достижение значений токов до сотен тысяч ампер, наблюдают яркость, она существенным образом больше, чем яркость лидера, помимо этого значение скорости его движения будет несколько десятков к/м. Значение температуры в канале, который относится к главному разряду достигает до нескольких тысяч градусов. Значение величины длины молниевого канала будет в основном несколько километров.

Для внутриоблачных молний есть большей частью только лидерные компоненты, по длине они будут составлять от 1 до 150 км. Когда возникает молния, то наблюдают изменения по электрическим и магнитным полях и радиоизлучению, говорят об атмосфериках.

Был открыт более, чем 20 лет назад некоторый вид молний, назвали эльфами, они относятся к верхней области атмосферы. Они представляют собой большие вспышки-конусы, которые характеризуются диаметрами порядка 400 км. После, через определенное время были обнаружены другие типы - джеты, которые представлялись как трубки-конусы, имеющие синий цвет, они имеют высоту, достигающую 40-70 км.

В результате оценок исследователей было показано, что в среднем в течение каждой секунды идет удар около 100 молний. Порядка четверти среди всех молний попадают в земную поверхность.

Разряд молний можно рассматривать как электрический взрыв и для определенных случаев он подобен процессу детонации. Как результат появляется ударная волна, возникновение ее опасно в случае непосредственной близости, может бить повреждение зданий, деревьев. При больших расстояниях происходит процесс вырождения ударных волн в звуковые - слышны громовые раскаты.

Можно отметить среднегодовое количество дней, когда происходит гроза для некоторых городов России: в Архангельске - 16, Мурманске - 5, Санкт-Петербурге - 18, Москве - 27,Воронеже - 32, Ростове-на-Дону - 27, Астрахани - 15, Самаре - 26, Казани - 23, Екатеринбурге - 26, Сыктывкаре - 21, Оренбурге - 22, Уфе - 29, Омске - 26, Ханты-Мансийске- 17, Томске - 23, Иркутске - 15, Якутске - 14, Петропавловске-Камчатском - 0, Хабаровске - 20, Владивостоке - 9.

Есть некоторая классификация по грозовым облакам, которая осуществляется, основываясь на грозовых характеристиках и есть зависимость таких характеристик во многом от того, какое метеорологическое окружение, в котором происходят процессы развития гроз. В случае одноячейковых кучево-дождевых облаков процессы развития будут тогда, когда ветер будет небольшим и слабым образом изменяется давление. Появляются локальные грозы.

Для размеров облаков характерным является то, что они будут в среднем порядка 10 километров, длительность их жизни не превосходит 1 час. Гроза появляется после того, как возникло кучевое облако в случае, когда есть хорошая погода. Вследствие благоприятных условий идет рост кучевых облаков по различным направлениям.

В верхних частях облаков идет формирование кристаллов льда, поскольку идет охлаждение, облака превращаются в мощно-кучевые облака. Формируются условия для того, чтобы выпадали осадки. Это будет кучево-дождевым облаком. Вследствие испаряющихся частиц осадков наблюдаются процессы охлаждения в окружающем воздухе. На этапе зрелости в облаках одновременным образом есть и восходящие, и нисходящие воздушные потоки.

На этапе распада в облаках есть преобладание нисходящих потоков, и потом они постепенным образом охватывают все облако. Весьма распространенный тип гроз - многоячейковые кластерные грозы. Размеры их могут достигать от 10 до 1000 километров. Для многоячейкового кластера отмечают совокупность грозовых ячеек, они двигаются как единое целое, однако идет расположение каждой ячейки в кластере на различных шагах изменений грозовых облаков. В грозовых ячейках, которые существуют на этапе зрелости, большей частью характерна центральная область кластера, а в распадающихся ячейках характерной является подветренная часть в кластере. Размер в поперечнике их большей частью составляет около 20-40 км. Для многоячейковых кластерных грозах может появляться град, идут ливневые дожди.

В структуре многоячейковых линейных гроз можно отметить линию гроз, в ней есть продолжительный, достаточно развитый фронт по порывам ветра в передних линиях фронта. Поскольку есть линии шквалов, то может быть крупный град и идти сильные ливни.

Появление суперъячейковых облаков может быть относительно редким, но их возникновение может приводить к большим угрозам для жизни людей. Есть подобие суперъячейкового облака и одноячейкового, они характеризуются одной зоной восходящего потока. Однако есть различие, заключающееся в том, что значение размера ячейки довольно большое: диаметр может достигать несколько десятков километров, высоты будут порядка 10-15 километров (в ряде случаев идет процесс проникновения верхней границы в стратосферу). При начале грозы характерной является температура воздуха рядом с землей около +27:+30 и более. Как правило в передней кромке суперъячейкового облака идет небольшой дождь.

Исследователями было продемонстрировано на базе самолётных и радарных исследовательских работ, что во многих случаях высота единичной грозовой ячейки может быть порядка 8-10 км и значение времени ее жизни около 30 минут. В случае восходящих и нисходящих потоков для изолированных гроз характерным является диаметр, который лежит в диапазоне от 0.5 до 2.5 км и высотой от 3 до 8 км.

Есть зависимость параметров скорости и движения грозовых облаков от того, как они располагаются относительно земной поверхности, того, как происходят процессы взаимодействия по восходящим и нисходящим потокам облаков с теми областями атмосферы, где наблюдаются процессы развития гроз. Скорость изолированной грозы обычно составляет порядка 20 км/час, но в некоторых грозах могут быть получены и большие значения. Если есть экстремальные ситуации, то значения скоростей в грозовом облаке могут быть до 65 - 80 км/час.

Энергия, которая приводит грозу в действие, обусловлена тем, что есть скрытая теплота, она высвобождается, когда конденсируется водяной пар и идет образование облачных капель. В этих процессах на каждый грамм воды, конденсирующейся в области атмосферы наблюдается процесс выхода порядка 600 калорий тепла. Когда замерзают водяные капли в верхних частях облаков, осуществляется процесс выхода ещё порядка 80 калорий на грамм. Возникающая при процессах высвобождения тепловая энергия частичным образом переходит в энергию, которая относится к восходящим потокам. При осуществлении оценок общей энергии в грозы можно получить величину порядка 108 киловатт-часов, это мы можем соотнести с ядерным зарядом в 20 килотонн. В случае, если есть большие многоячейковые грозы значение энергии может быть более, чем в 10 раз.

Особенности структуры того, как располагаются электрические заряды как во внутренней, так и внешней области грозовых облаков, подчиняются сложным закономерностям. Однако при этом, мы можем представить то, какая обобщенная картина распределения электрических зарядов, которые характеризуют стадию зрелости облаков. Весьма большой вклад принадлежит положительной дипольной структуре. В ней в верхней области облака существует положительный заряд, во внутренней части облака существует отрицательный заряд. Когда двигаются атмосферные ионы на краях облака возникают процессы формирования экранирующих слоев, которые ведут к маскированию электрической структуры облаков относительно наблюдателей, которые располагаются вне их. Анализ приводит к тому, что отрицательные заряды будут относиться к высотам, характеризующимся температурой окружающего воздуха, которая лежит в диапазоне от -5 до -17 °C. При увеличении скорости восходящих потоков в облаках идет рост высоты центров отрицательных зарядов.

Особенности электрической структуры в грозовых облаках можно объяснить при помощи разных подходов. По основным гипотезам можно указать такую, которая основывается на том, что крупные облачные частицы характеризуются в основном отрицательным зарядом, лёгкие частицы характеризуются положительным зарядом. Помимо этого, крупные частицы имеют большую скорость падения, что подтверждалось на базе лабораторных экспериментов. Может быть проявление и других механизмов электризации. Когда увеличивается объемный электрический заряд, который есть в облаке, до определенных значений, то возникает разряд молнии.

Анализ показывает, что молнии могут считаться, как довольно ненадежный источник энергии, так как довольно трудно осуществить предсказания по тому, где и в какое время будет появление грозы. Молния привносит напряжение порядка сотен миллионов вольт и значения пиковых токов могут быть в некоторых молниях до 200 килоампер (в общем случае - 5-20 килоампер).

Есть еще проблемы грозовой энергетики, которые связаны с весьма малой длительностью разрядов молний - доли секунд, в этой связи требуется использование мощных и очень дорогостоящих конденсаторов.

То есть, можно отметить большое число проблем . Но, если сделать установку молниеулавливающей станции, где молнии рассматриваются как частое явление, то можно обеспечить большое количество энергии, которое будет направляться потребителям.

Библиографическая ссылка

Кузнецов Д.А. ВОЗМОЖНОСТИ РАЗВИТИЯ СОВРЕМЕННОЙ ГРОЗОВОЙ ЭНЕРГЕТИКИ // Международный студенческий научный вестник. – 2017. – № 4-6.;
URL: http://eduherald.ru/ru/article/view?id=17585 (дата обращения: 15.06.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
ИЗОБРЕТЕНИЕ
Патент Российской Федерации RU2332816

УСТРОЙСТВО ДЛЯ НАКОПЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ МОЛНИИ

Имя изобретателя: Блескин Борис Иванович, Трушкин Николай Сергеевич, Хлестков Юрий Алексеевич, Леонов Борис Иванович, Машков Олег Алексеевич, Рыбкин Евгений Александрович, Ишутин Василий Александрович, Новиков Евгений Геннадьевич, Блескин Александр Борисович, Машков Сергей Олегович
Имя патентообладателя: Блескин Борис Иванович, Трушкин Николай Сергеевич, Хлестков Юрий Алексеевич, Леонов Борис Иванович, Машков Олег Алексеевич
Адрес для переписки: 115612, Москва, ул. Борисовские пруды, 22, корп.1, кв.120, Б.И. Блескину
Дата начала действия патента: 17.11.2006

Изобретение относится к области приборостроения и может быть использовано для накопления электрической энергии. Технический результат - расширение функциональных возможностей. Для достижения данной цели громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества. Вблизи громоотвода расположены элементы для съема энергии. При этом элемент для съема энергии содержит катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура. Катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Изобретение относится к физике, а именно к электротехническим устройствам для использования электрической энергии молнии и атмосферы в целом. Оно может быть использовано в районах, где часто бывают грозы, как источники энергии для промышленных и хозяйственных целей.

Известно устройство для использования атмосферной электрической энергии, содержащее вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема энергии (Авторское свидетельство СССР №781, кл. Н05F 7/00, 1925 г.). Данное устройство может быть использовано для накопления электрической энергии.

Однако известное устройство не позволяет использовать электрическую энергию молнии, поскольку оно не приспособлено к удару молнии, а выделяемая при ударе молнии энергия приводит к его разрушению. В то же время для накопления электрической энергии атмосферы ее параметры сопротивления току весьма велики.

Задачей настоящего изобретения является получение дешевого источника энергии в районах, где часто бывают грозы.
Техническим результатом изобретения является создание устройства, которое позволяет накапливать и электрическую энергию, выделяемую в молниеотводе при ударе в него молнии, а также извлекать ее избыток из атмосферы между разрядами молний.

Решение указанной задачи достигается тем, что в известном устройстве для накопления энергии, содержащем вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема энергии, громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества, вблизи которого расположено одно или несколько элементов для съема энергии.

Кроме того, элемент для съема энергии может содержать, например, катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

В другом случае элемент для съема энергии имеет катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 ом.

Средство заземления в предлагаемом устройстве для накопления энергии может быть выполнено в виде открытой или замкнутой емкости, наполненной электролитом, а громоотвод может быть выполнен, например, в виде токопроводного стержня.

На фиг.1 изображена электрическая схема устройства для накопления энергии молнии с катушкой индуктивности, расположенной вблизи громоотвода, выполненного в виде токопроводного стержня. На фиг.2 изображена электрическая схема устройства для накопления энергии молнии с катушкой индуктивности, выполненной в виде тороида, ось симметрии которого совпадает с осью громоотвода. На фиг.3 изображено устройство для накопления энергии молнии со средством заземления, выполненным в виде открытой емкости, наполненной электролитом, например водой.

Устройство для накопления энергии содержит громоотвод 1, например, вертикально установленный токопроводный стержень, соединенный со средством заземления 2, и элемент 3 для съема энергии. Громоотвод 1 выполнен в виде проводника, вдоль которого расположено один или несколько элементов 3 для съема энергии, каждое из которых имеет, например, катушку 4 индуктивности, полупроводниковый элемент 5 и конденсатор 6, соединенные последовательно с образованием единого электрического контура. Накапливаемое на конденсаторе 6 напряжение можно снять для дальнейшего использования.

Катушка 4 индуктивности в предлагаемом устройстве может быть размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют наименьшее сопротивление току не более 1 Ом (см. фиг.2).

Устройство для накопления энергии со средством заземления, выполненным в виде емкости 7 (см. фиг.3), наполненной электролитом, например водой, имеет дно, выполненное в виде токопроводного листа 8, соединенного с громоотводом 1. Предлагаемое устройство может содержать несколько ярусов соленоидов 9, расположенных соосно с громоотводом 1 внутри корпуса 10, снабженного крышкой 11. При этом корпус 10 установлен на фундаменте 11 в почве 12.

Устройство для накопления электрической энергии молнии работает следующим образом

При ударе молнии в молниеотвод устройства накопления энергии по стержню протекает ток порядка I=(2-5)·10 5 А. Этот ток создает вокруг себя круговое магнитное поле Н, в которое помещают катушку индуктивности. При этом ЭДС (Е), возникающую в катушке индуктивности, накапливают на конденсаторе 6.

В зависимости от расстояния между элементами для съема энергии и стержнем 1 можно получать ЭДС (Е) разной величины. Этой ЭДС заряжают конденсатор 6 (см фиг.1).
В качестве громоотвода используют, например, провод диаметром (6-10) мм или токопроводный канат.

С электрической точки зрения, устройство является трансформатором тока, с той лишь разницей, что вторичная обмотка замкнута на обычный накопитель электрической энергии - диод-емкость. Накопленная электростатическая энергия с емкости 6 может быть направлена к различным потребителям от осветительных устройств до электродвигателей, раскручивающих маховики, аккумулирующих механическую энергию, более выгодную, чем электростатическую.

Пример 1.
Устройство для накопления энергии с катушкой 3 индуктивности, которая размещена на расстоянии от одного до десяти метров от стержня 1 и ориентирована ортогонально любой плоскости, проходящей через стержень (см. фиг.1).

Пример 2.
Устройство для накопления энергии с катушкой 3 индуктивности, выполненной в виде тороида, ось симметрии которого совпадает со стержнем 1 (см. фиг.2).

Определяем величину ЭДС Е, которая возникает на соленоиде диаметром d=100 мм и числом витков n=10 3 и расстоянии от снижения R=10 м.

где 0 - магнитная проницаемость пустоты, равная 4π ·10 7 " S - площадь поперечного сечения соленоида, n - число витков.

Соленоид ориентирован вдоль линии Н, а изменение напряженности магнитного поля происходит импульсно за время τ при протекании заряда через стержень.

В этом случае ΔН/Δt по закону Био-Савара-Лапласа определяется из соотношения

ΔН/Δt=I/(2π ·R·τ), где I - величина тока, протекающего через стержень во время удара молнии.

Следовательно, полагая τ=5·10 -3

Расположив по кругу множество соленоидов в несколько ярусов, можно получить большое количество источников постоянного тока, которые можно использовать для заряда малых аккумуляторов или одного большого.

Пример 3.
При использовании предлагаемого устройства (фиг.3) для очистки воды пар, возникающий из-за разогрева токопроводного листа 8, конденсируют любым известным способом.

Кроме того, образованный пар можно использовать для приведения в действие паровых механизмов, утилизирующих энергию пара.

Таким образом, с помощью предложенного устройства для накопления энергии значительную часть энергии молнии можно использовать в средстве заземления, выполнив его в виде замкнутой оболочки соответствующей прочности, которую оборудуют редукционными клапанами, для получения чистой воды или импульсных паровых двигателей. Поршень такого двигателя с возвратной пружиной может совершать многократные колебания, а будучи соединенным с постоянным магнитом, помещенным внутрь соленоида, он может служить ротором линейного генератора тока. В этом случае в устройстве для накопления энергии элемент для съема энергии может быть размещен на расстоянии от одного до десяти метров от стержня 1.

Техническая эффективность изобретения состоит в том, что благодаря применению предложенного устройства в местах, где часто бывают грозы, возможно утилизировать часть энергии молнии. Энергия атмосферного электричества, сохраняемая с помощью предлагаемого устройства при разрядах молнии, может быть преобразована в любой другой вид энергии, например:

    для производства чистой воды при испарении и конденсации пара в накопителе;

    для вращения маховиков большой массы;

    для накопления механической энергии.

Предложенное устройство простое как при изготовлении, так и в эксплуатации. Особенно эффективно оно может быть использовано в районах, где грозы - очень частое атмосферное явление.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство для накопления электрической энергии молнии, содержащее вертикально установленный громоотвод, соединенный со средством заземления, и элемент для съема электрической энергии, отличающееся тем, что громоотвод выполнен в виде проводника с наименьшим сопротивлением току атмосферного электричества, вблизи которого расположено одно или несколько элементов для съема электрической энергии, при этом элемент для съема электрической энергии содержит катушку индуктивности, полупроводниковый элемент и емкость, соединенные последовательно с образованием единого электрического контура, а катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом, а элемент для съема энергии расположен на расстоянии от 0,1 до 10 м от громоотвода.

2. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что катушка индуктивности размещена ортогонально любой плоскости, проходящей через ось громоотвода, и выполнена в виде тороида, ось симметрии которого совпадает с осью громоотвода, при этом катушка индуктивности и полупроводниковый элемент имеют сопротивление току не более 1 Ом.

3. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что средство заземления выполнено в виде открытой или замкнутой емкости, наполненной электролитом.

4. Устройство для накопления электрической энергии молнии по п.1, отличающееся тем, что громоотвод выполнен в виде стержня.

Используя свойства молнии направляться к высоким предметам, особенно в том случае, если они хорошо про­водят электрический ток, можно «ловить» молнию. Для этого в нашем Союзе были использованы воздушные ша­ры, поднимавшие в грозовые тучи металлические троссы, присоединённые к земле. В этих случаях «пойманные» молнии были использованы лишь для научных целей.

Оценить, насколько выгодно использовать энергию молнии для технических целей, можно, определив работу, которую может произвести грозовой разряд. Так как молния длится очень короткое время, то эта энергия ока­зывается очень небольшой. Подсчитали, что одна молния может «наработать» в среднем лишь на несколько руб­лей. При такой небольшой работоспособности молнии трудно говорить о целесообразности технического её ис­пользования. Применение молнии в качестве источника энергии затруднено ещё и потому, что за один грозовой сезон даже в очень высокий молниеприёмник (400 - 800 метров над землёй) молния ударяет не более 20-25 раз.

Так как шаровая молния изучена сравнительно мало, то до сих пор ещё нет надёжно проверенных способов защиты от неё. Хотя и бывали случаи, когда шаровая молния прони­кала даже через закрытое …

Чтобы не быть поражённым ударом молнии, нужно избегать во время грозы подходить к молниеотводам или высоким одиночным предметам (столбам, деревьям) на расстояние меньшее 8-10 метров. Если человек застиг­нут грозой вдали …

Основные требования, которые предъявляют к соору­жению молниеотвода, защищающего от грозы колхозные и сельские постройки, - это дешевизна и простота са­мого устройства. Наилучшей защитой является стержневой молние­отвод, который устанавливают на самой …